

備員能

Neutron reflectometry at CMRR reactor and its applications

C. Q. Huang, J. K. Ren, T. Xia, X. X. Li, Y. Wang,

ca@caep.ci

Institute of Nuclear Physics and Chemistry, CAEP Key laboratory for neutron physics, CAEP

2018.5.28 6.1, Xi'an, China

What you will know

Introduction of neutron reflectometry

> Diting - a reflectometer at CMRR

> The helium behavior in materials

Acknowledgement

2

3

4

What is reflectometry?

What is reflectometry?

Glancing angle neutron reflection

Polarized neutron reflection

6

A brief theory of Neutron reflectometry

Neutron reflectometry (NR) can provide the profile of scattering length density along the depth(SLD(z)) , which relates to the scattering length(b) and <u>number density(n) of nu</u>clides

Typical use of NR

- Inter-diffusion of polymers
- Phase separation in block copolymers
- Amphiphilic molecules at air-water interfaces
- · Effect of shear on films of complex fluids
- Grafting of polymers to surfaces (mushrooms and brushes)
- Swelling of films exposed to vapor
- Magnetic structure of multilayers
- CMR/GMR films
- Exchange bias and exchange springs
- Nuclear polarization in spintronic materials

Acknowledgement

Eur. Phys. J. Plus ,2016, 131: 407

0

Specifications of Diting

Parameter	Specifications Time of Flight (TOF) + Polarization			
Characteristic				
Neutron scattering plane	Horizontal			
Magnetic field in sample position	0-1.2T			
Range of neutron wavelength	0.2nm-1.25nm			
Available range of momentum transfers	0~5.13nm ⁻¹			
Measurable minimum reflectivity	10-6			
Δλ for 0.4nm	0.0023nm			
Peak flux at sample position	7.5×10⁴ n/cm²ö⋅s			
Polarizer and analyzer efficiency	≥95%			
Flip probability of flipper	≥ 99%			

Layout of Diting

Fig. 1. Perspective view of TPNR reflectometer, the main components(numbers): 1.second shutter,
2. focus neutron guide, 3. neutron beam monitor, 4. 1[#] slit, 5. four-disk chopper system, 6. 2[#] slit,
7. front vacuum tube, 8. polarized system(polarizer and 1[#] flipper), 9. 3[#] slit, 10. sample unit with electromagnet, 11. 4[#] slit, 12, back vacuum tube, 13. analyzer syster(2[#] flipper and analyzer), 14.
³He filled two-dimensional position sensitive detector, 15. beam stop.

Main Component: Four-Disk Chopper

- > More wavelength resolution choice
- Convenient wavelength band selection
- > Matching the requirements of polarizer
- > Suitable to position sensitive sample

Neutron Spectrum

4

Wavelength resolution at 0.4 nm: 0.0023nm

Neutron Spectrum

The wavelength resolution is determined from the half width of the Bragg edge from beryllium (the edge of the graphite sheet has significant width).

Neutron Spectrum

Available wavelength: 0.16nm ~ 1.25 nm

Main Component: Polarization system

Main Component: Polarization system

> Calibration at Oct 10, 2014.

Main Component: PSD Detector

Very suitable to off-specular studies

Main Component: DAQ system

Main Component: DAQ system

Main Component: Environmental Device

Sample Unit

1, Small sample unit

2, Large sample unit

Environment Unit

Cryostat+ Furnace+Magnet 5K-800K; 0-1.2T °

Use: Temperature effect on the Estane Film

Annealing at 50°C increased the thickness of diffusion layer

Use: Exchange Bias Effect in Magnetic Nano-film

The saturation magnetic flux density in the direction parallel to the antiferromagnetic is 0.98T, which is consistent with the results of Vibrating Sample Magnetometer. Obviously, the interlayer diffusion is found, and the different microstructure-performance correlations are established to enhance the electromagnetic stealth

Use: U absorption depending on Conformation

Accurate extraction of the molecular chain in the aqueous solution of the extension of the thickness of 250 nm and density, the establishment of different environments under the performance microstructure - process can enhance the material to enhance the performance of uranium

The conformation of fiber plays an important role in the absorption of uranium

Use: He Capture Behavior of Cr / W Multilayers

26

Cr / W multilayers are the fusion reactor plasma wall materials. The neutron reflectometry gives the helium location in the multilayers, and proves the aggregation of the helium atoms at the interface.

Acknowledgement

4

Motivation

Pu: fission produce He. ~10a, voids and bubbles are visible, induce swelling and worsen performance

21a Pu-Ga, 400°C@1h

Motivation

He accelerated release of metal tritides has a great impact on its performance, such as brittlement, surface powder, etc., its storage and application environment will also be affected.

Motivation

Ion Implantation

Adv : Simple and quick features

Disadv: Low energy: small infiltration depth, fewer body characteristics; high energy: serious damage,

Tritium Decay

Adv : body uniform, fewer atomic damage

Disadv : Longer accumulation, half-life of 12.32 years, not easy to access

Magnetron sputtering

Adv : fast formation, uniform He, easy to control helium concentration

Disadv : The deposited film is thin and loose, difficult to prepare the bulk sample

Nuclear(n, α) reaction

Adv : Simultaneous simulation of helium accumulation and atomic displacement damage, body distribution

activation

Disadv : Helium accumulation is very slow, needs "cool" time

Sample preparation by magnetron Sputtering

Si/TiHe & Si/ZrHe multilayer

parametes

Ti(He)Film

 TiFilm.
 He:Ar = 0:10

 Ti (HeAr3).
 He:Ar = 30:10

Ti(HeAr9). H:Are = 90:10

Zr(He)Film

ZrFilm. He:Ar = 0:10 Zr(HeAr3). He:Ar = 30:10 Zr(HeAr6). He:Are =60:10

Sample preparation by magnetron Sputtering

Tech	
Para	
Initial sample	
ZrH3030. Ar:H2=30:30 Chemical Phase/structu Density/ SLI re g cm ⁻³ 10 ⁻⁴ m	Dr m ⁻²
ZrH3010. Ar:H2=30:10 ZrH2 ε-phase/BCT 5.617 -0.4	12
Annealed sample ZrH1.66 δ-phase/FCC 5.646 0.3	5
ZrH3030_VA. 2h@300°C ZrH3020_VA. 2h@300°C <td>0</td>	0
ZrH3010_vA. 2n@300°C	

NR analysis (Ti-He)

The atomic ratio of helium atoms in helium-doped Ti films is 28.06% when the He / Ar ratio is 3, and the higher the He is in the atmosphere, the more helium atoms are embedded.

	density	SLD@25.3meV	SLD	He density	Zr density	He ratio
sample	(g/cm ³)	(10 ⁻⁴ nm ⁻²)	(10 ⁻⁴ nm ⁻²)	(10 ²¹ cm ⁻³)	(10 ²² cm ⁻³)	(%)
Ti bulk	4.540	-1.9242	-	-	5.71	-
TiFilm	4.628	-1.9615	-	-	5.82	-
Ti (HeAr3)	3.640	-1.5428	0.4188	12.85		28.06
Ti (HeAr9)	4.027	-1.7066	0.2549	7.82	-	15.44

NR analysis (Zr-He)

The ratio of He to Ar is introduced into the atmosphere, and when the He: Ar atmosphere ratio is 6, the atomic ratio is increased to 18.17% .

NR analysis (Zr-He)

The TEM observation of ZrHe3030 sample before and after annealing showed that the Zr-He sample was prepared with fine helium bubbles. The annealing treatment not only increased the size of helium bubble, but also increased the number of helium bubbles.

TEM of as the sputtered

TEM of as the annealed

NR analysis (Zr-H)

Different layers of Ar: H, the protective layer Ta and Zr are hydrogenated, slightly different thickness ZrH_x (x <1) composition, low H content Ta oxide film is protected, high H to be thicker Ta protective layer

Conclusion

- Ti films and hydrides containing Ti and Zr were prepared on SiO₂ substrates by control of the ratio of Ar:H atmosphere. The films were characterized by neutron reflection (NR).
- NR shows the ZrD_X layer appeared stratified and the H distribution was not uniform. In the low H, H has a relatively lower SiO2 / Zr interface at the Zr / Ta interface, and the Zr / Ta interface increases at high H. The content of H increased with the increase of H content in the atmosphere.
- The annealed same sample shows, γ-ZrH was formed near the interface of SiO2 / Zr, and different ZrHX compounds were formed at the Zr / Ta interface with the relative content of H. After annealing, H in the high hydrogen content sample (similar to 3030 and 3020) is relatively large at the Zr / Ta interface; the low content sample (3010) at the Zr / Ta interface will migrate to the near substrate.

Acknowledgement

Acknowledgement(Our Team, Lab)

47 stuffs, 14 (associate)Prof, 27 Dr., 34.5y average age MS&PHD Students: 15

How to get neutron beam?

中子散射技术与应用研究室

LABORATORY OF

ALL TREM IC & TTERMS THE DISCOUNCE AND ADDRESS AT A TALK

THE YELLOW BOOK 2016

How to get neutron beam?

LP

Thank you for your attention! Comments are welcome! ttering Laboratory